Pyrogenic carbon additions to soil counteract positive priming of soil carbon mineralization by plants

نویسندگان

  • Thea Whitman
  • Akio Enders
  • Johannes Lehmann
چکیده

Important due to both its role in fire-affected ecosystems, and also its proposed intentional production and application for carbon (C) management, pyrogenic organic matter (PyOM) is thought to contain very stable forms of C. However, the mechanisms behind its interactions with non-PyOM soil organic C (SOC) remain speculative, with studies often showing short-term positive and then long-term negative “priming effects” on SOC decomposition after PyOM applications. Furthermore, studies of these interactions to date have been limited to systems that do not include plants. This study describes results from a 12-week greenhouse experiment where PyOM-SOC priming effects with and without plants were investigated using stable isotope partitioning. In addition, we investigated the optimal d13C proxies for sources of SOC, PyOM, and plant-derived CO2 emissions. The two-factorial experiment included the presence or absence of corn plants and of 13C-labelled PyOM. In order to control for pH and nutrient addition effects from PyOM, its pH was adjusted to that of the soil and optimal nutrient and water conditions were provided to the plants. The d13C of PyOM sub-components were significantly different. Significant losses of 0.4% of the applied PyOM-C occurred in the first week. We find evidence for a “negative priming” effect of PyOM on SOC in the system (SOC losses are 48% lower with PyOM present), which occurred primarily during the first week, indicating it may be due to transient effects driven by easily mineralizable PyOM. Additionally, while the presence of corn plants resulted in significantly increased SOC losses (“positive priming”), PyOM additions counteract this effect, almost completely eliminating net C losses either by decreasing SOC decomposition or increasing corn C additions to soil. This highlights the importance of including plants in studies of PyOM-SOC interactions. 2014 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Carbon mineralizability determines interactive effects on mineralization of pyrogenic organic matter and soil organic carbon.

Soil organic carbon (SOC) is a critical and active pool in the global C cycle, and the addition of pyrogenic organic matter (PyOM) has been shown to change SOC cycling, increasing or decreasing mineralization rates (often referred to as priming). We adjusted the amount of easily mineralizable C in the soil, through 1-day and 6-month preincubations, and in PyOM made from maple wood at 350 °C, th...

متن کامل

Ryegrass - derived pyrogenic organic matter changes organic carbon and nitrogen mineralization in a temperate forest soil

Pyrogenic organic matter (PyOM) is considered as a technique to improve soil fertility and store carbon (C) in soil. However, little is known regarding soil organic C and nitrogen (N) mineralization in PyOM-amended soils. To investigate the relationship between the C and N mineralization rates and the possible consequences in terms of C storage and N availability, we incubated ryegrass-derived ...

متن کامل

Rhizosphere priming effects on soil carbon and nitrogen mineralization

Living roots and their rhizodeposits affect microbial activity and soil carbon (C) and nitrogen (N) mineralization. This so-called rhizosphere priming effect (RPE) has been increasingly recognized recently. However, the magnitude of the RPE and its driving mechanisms remain elusive. Here we investigated the RPE of two plant species (soybean and sunflower) grown in two soil types (a farm or a pr...

متن کامل

Organic carbon dynamics in soils with pyrogenic organic matter that received plant residue additions over seven years

The effect of repeated application of plant residues on mineralization of different organic carbon (OC) pools in a pyrogenic organic matter (PyOM) amended soil was determined using an incubation study conducted over 7.1 years. At five occasions during this period, sugarcane residues (C4) were mixed with the soil (C4) with or without PyOM (C3) amendments. Organic C mineralized during the incubat...

متن کامل

A meta - analysis on pyrogenic organic matter induced priming effect

Pyrogenic organic matter (PyOM) is considered an important soil carbon (C) sink. However, there are evidences that its addition to soil may induce a priming effect (PE) thus influencing its C abatement potential. The direction, the size and the mechanisms responsible for PyOM induced PE are far from being understood. We collected approximately 650 data points from 18 studies to analyse the char...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014